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Abstract

We use two methods, harmonic balance and iteration, to calculate analytical approximations to the periodic solutions of

a nonlinear singular oscillator.

r 2007 Elsevier Ltd. All rights reserved.
An important and interesting nonlinear differential equation is the following one:

€yþ
c

y
¼ 0; c40. (1)

This equation occurs in the modeling of certain phenomena in plasma physics [1]. An examination of the
physical principles behind the derivation of the equation [1], along with a study of the ðy; v ¼ _yÞ phase-plane [2]
shows that all solutions are periodic. Using methods given in Mickens [2], it can be shown that the exact value
for the angular frequency is given by the expression

oexðAÞ ¼
2p

T exðAÞ
, (2)

where the period is

TexðAÞ ¼ 2
ffiffiffi
2
p

A

Z 1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=sÞ

p , (3)

and the following initial conditions were selected:

yð0Þ ¼ A; _yð0Þ ¼ 0 (4)

with c ¼ 1. In the calculations to come, this value is always used, i.e., Eq. (1) becomes

€yþ
1

y
¼ 0. (5)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The definite integral in Eq. (3) can be easily evaluated [4]; doing this gives [1,3]

T exðAÞ ¼ 2
ffiffiffiffiffiffi
2p
p

A, (6)

or

oexðAÞ ¼

ffiffiffiffiffiffi
2p
p

2A
¼

1:2533141

A
. (7)

The purpose of this Short Communication is to calculate analytical approximations to the periodic
solutions of Eq. (5) using both harmonic balance methods and an iteration scheme. The results obtained
provide excellent approximations to the exact solution as measured by the percentage error in the calculated
values for the angular frequency in comparison to the exact value of Eq. (7).

The first-order harmonic balance solution takes the form [2]

y0ðtÞ ¼ A cosðotÞ. (8)

Observe that y0ðtÞ satisfies the initial conditions, Eq. (4), and the task is to calculate oðAÞ. At this point, the
essential question is how to rewrite Eq. (5) such that the method of harmonic balance can be easily applied.
The most convenient way to do this is to express it as

y €yþ 1 ¼ 0. (9)

Substitution of Eq. (8) into Eq. (9) gives

�
o2A2

2

� �
þ 1

� �
ðHOHÞ ’ 0, (10)

where HOH � higher-order harmonics. Thus, in the lowest-order it follows that

�
o2A2

2

� �
þ 1 ¼ 0 (11)

and

o0ðAÞ ¼

ffiffiffi
2
p

A
¼

1:4142

A
. (12)

The next level of harmonic balance uses the form

y1ðtÞ ¼ A1 cos yþ A2 cos 3y; y ¼ ot, (13)

where ðA1;A2;oÞ are to be determined as functions of A. Substituting Eq. (13) into Eq. (9), carrying out the
various trigonometric operations, the following result is obtained:

�o2 A2
1 þ 9A2

2

2

� �
þ 1

� �
� o2 A2

1 þ 10A1A2

2

� �
cos 2yþHOH ’ 0. (14)

Setting the constant term and the coefficient of cos 2y equal to zero gives two algebraic equations

�o2 A2
1 þ 9A2

2

2

� �
þ 1 ¼ 0;

o2A1

2

� �
ðA1 þ 10A2Þ ¼ 0. (15)

The nontrivial solution to the second equation is A2 ¼ �ðA1=10Þ. Substitution of this into the first equation
gives

o2
1ðA1Þ ¼

200

109A2
1

. (16)

With these values for A1 and A2, Eq. (13) can be written

y1ðtÞ ¼ A1 cosðo1tÞ �
1

10

� �
cosð3o1tÞ

� �
. (17)
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Requiring y1ð0Þ ¼ A gives

A1 ¼
10

9

� �
A, (18)

and finally

y1ðtÞ ¼
10

9

� �
A cosðo1tÞ �

1

10

� �
cosð3o1tÞ

� �
(19)

with

o2
1ðAÞ ¼

162

100

� �
1

A2
(20)

or

o1ðAÞ ¼
1:272792

A
. (21)

Note that the percentage error is very small, i.e.,

percentage error �
oex � o1

oex

����
���� � 100 ¼ 1:6%.

Iteration schemes provide an alternative procedure for calculating approximations to periodic solutions
[3,5]. The scheme to now be used for Eq. (9) is

€ykþ1 þ O2ykþ1 ¼ O2yk � ð €ykÞ
2yk, (22)

where k ¼ 0; 1; 2; :::; each ykþ1ðtÞ is required to satisfy

ykþ1ð0Þ ¼ A; _ykþ1ð0Þ ¼ 0, (23)

and at each stage k of the iteration the angular frequency is determined by the requirement that no secular
terms appear in the solution for ykþ1ðtÞ. The details as to how to apply these types of calculational schemes are
given in Refs. [5,3]. This iteration procedure was formulated as follows:

y €yþ 1 ¼ 0,

€yþ ð €yÞ2y ¼ 0,

€yþ O2y ¼ O2y� ð €yÞ2y (24)

with, finally, the result

€ykþ1 þ O2
kþ1ykþ1 ¼ O2

kþ1yk � ð €ykÞ
2yk. (25)

The iteration starts by using for y0ðtÞ the form

y0ðtÞ ¼ A cos y; y ¼ Ot. (26)

Substitution of this into Eq. (25) gives

€y1 þ O2
1y1 ¼ O2

1A 1�
3A2O2

1

4

� �
cos y�

A3O4
1

4

� �
cos 3y. (27)

The absence of secular terms in y1ðtÞ requires that the coefficient of the cos y term be zero. Using this, it follows
that:

O1ðAÞ ¼
2ffiffiffi
3
p

A
¼

1:15470

A
, (28)

a value also obtained by He [3]. Thus, y1ðtÞ is the solution to

€y1 þ O2
1y1 ¼ �

A3O4
1

4

� �
cos 3y. (29)
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The complete solution to Eq. (29), satisfying y1ð0Þ ¼ A and _y1ð0Þ ¼ 0 is

y1ðtÞ ¼ A cos y�
A3O2

1

32

� �
ðcos y� cos 3yÞ. (30)

If OðAÞ is replaced by Eq. (28), then

y1ðtÞ ¼ A
23

24

� �
cos

2tffiffiffi
3
p

A

� �
þ

1

24

� �
cos

6tffiffiffi
3
p

A

� �
t

� �
. (31)

Note that this calculation for O1ðAÞ has the following percentage error:

oex � O1

oex

����
���� � 100 ¼ 7:9%. (32)

To calculate y2ðtÞ, the form of y1ðtÞ given by Eq. (30) must be used and the differential equation to be solved
is

€y2 þ O2
2y2 ¼ O2

2y1 � ð €y1Þ
2y1. (33)

The absence of secular terms for the solution of y2ðtÞ will allow the determination of O2ðAÞ. However, the work
required to solve for y2ðtÞ is very algebraic intensive and, as a consequence, y2ðtÞ will not be given.

By comparison, the second-order harmonic balance method gives a more accurate solution than the first-
order iteration procedure, i.e., 1.6% versus 7.9% for the calculated angular frequency. What the work of this
paper demonstrates is that even for singular differential equations, such as Eq. (1), a variety of techniques exist
for the determination of analytical approximations to the periodic solutions. (Eq. (1) is a singular differential
equation because the second term on the left-side is not defined when y ¼ 0.) Here, we have shown that the
harmonic balance method provides an excellent approximation and that calculating this solution was quite
easy. However, there exist other situations for which harmonic balance is not applicable and iteration
procedures must be used [6].

The oscillator of Eq. (1) has also been studied by He [3] within the context of the homotopy perturbation
method. For purposes of comparison with the results presented here, a summary of He’s calculations is given
below. Note that the notation of He’s paper has been changed to conform with this paper’s representations of
equations and solutions.

He gives three approximations to the solutions of Eq. (1) or (5), with c ¼ 1, using various formulations of
the homotopy perturbation method. (See the introduction to Section 5 of He [3] for a detailed explanation of
this method.) In the first approach, He obtains

yðtÞ ’ A cosðotÞ þ
1

o

� �Z t

0

sin½oðs� tÞ� Ao2 cosðosÞ �
1

A cosðosÞ

� 	
ds, (34)

with

o ¼

ffiffiffi
2
p

A
. (35)

In spite of the fact that the estimate for o is reasonable, this solution must be rejected since an evaluation of
the integral in Eq. (34) shows that it contains secular terms, i.e., solution that increase in time and/or can
become unbounded; see Mickens [2] for a discussion of secular terms.

In the second approach, He finds that yðtÞ is approximated by the following expressions:

yðtÞ ’ A cosðotÞ þ
A3

32

� �
½cosðotÞ � cosð3otÞ�, (36)

where

o ¼
2ffiffiffi
3
p

A
. (37)
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Note that for this value of o, the fractional error is 7.8%. However, this particular solution has a limitation on
the values of the amplitude since the second term on the right-hand side of Eq. (36) should be smaller than the
magnitude of the first term. This condition translates into the restriction 0oAo4.

The third approach by He gives

yðtÞ ’ A
71

72

� �
cosðotÞ �

1

72

� �
cosð3otÞ

� �
, (38)

with o having the same value as that given in Eq. (37). Note that this approximation to the solution is more
satisfactory than the previous two, the major reason being the smallness of the amplitude higher harmonic
relative to the amplitude of the first harmonic.

In summary, He’s results from the use of the homotopy perturbation method does not provide better
approximations to the solutions of Eq. (1), with c ¼ 1, than the calculations presented here using the direct
second-order harmonic balance method for which the percentage error is very small, i.e., 1.6%. On the other
hand, the iteration method of this paper gives exactly the same estimate for o as He’s second and third
approaches, but has the advantages of having no limitations on the magnitude of the amplitude, A, and
further gives a ratio for the amplitude of the third to first harmonic that is small, i.e., 1=23.

The general conclusion is that the method of harmonic balance provides an easy and direct procedure for
determining approximations to the periodic solutions of Eq. (1). This procedure also gives a very accurate
estimate for o at the second level of harmonic balancing. Finally, in comparison to the homotopy method,
both harmonic balance and the iteration method produce better solutions.

The work reported here was supported in part by a research grant from DOE.
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